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Abstract: - In the present paper, for intelligent constructing efficient (optimal, uniformly non-dominated, 
unbiased, improved)  statistical decisions under parametric uncertainty, a new technique of invariant embedding 
of sample statistics in a decision criterion and averaging this criterion over  pivots’ probability distributions 

 
is 

proposed.  This technique represents a simple and computationally attractive statistical method based on the 
constructive use of the invariance principle in mathematical statistics. Unlike the Bayesian approach, the 
technique of invariant statistical embedding and averaging via pivotal quantities (ISE&APQ) is independent of 
the choice of priors and represents a novelty in the theory of statistical decisions. It allows one to eliminate 
unknown parameters from the problem and to find the efficient statistical decision rules, which often have 
smaller risk than any of the well-known decision rules. The aim of the present paper is to show how the technique 
of ISE&APQ may be employed in the particular case of optimization, estimation, or improvement of statistical 
decisions under parametric uncertainty. To illustrate the proposed technique of ISE&APQ, illustrative examples 
of intelligent constructing exact statistical tolerance limits for prediction of future outcomes coming from 
log-location-scale distributions under parametric uncertainty are given.  
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1 Introduction 
In the present paper we consider the case, where it is 
known that the true distribution function belongs to 
a parametric family of distributions. It will be noted 
that, in this case, most stochastic models to solve 
the problems of control and optimization of system 
and processes are developed in the extensive 
literature under the assumptions that the parameter 
values of the underlying distributions are known 
with certainty. In actual practice, such is simply not 
the case. When these models are applied to solve 
real-world problems, the parameters are estimated 
and then treated as if they were the true values. The 
risk associated with using estimates rather than the 
true parameters is called estimation risk and is often 
ignored. When data are limited and (or) unreliable, 
estimation risk may be significant, and failure to 
incorporate it into the model design may lead to 
serious errors. Its explicit consideration is 
important since decision rules that are optimal in 
the absence of uncertainty need not even be 
approximately optimal in the presence of such 
uncertainty. The problem of determining an optimal 

decision rule in the absence of complete 
information about the underlying distribution, i.e., 
when we specify only the functional form of the 
distribution and leave some or all of its parameters 
unspecified,  is seen to be a standard problem of 
statistical estimation. Unfortunately, the classical 
theory of statistical estimation has little to offer in 
general type of situation of loss function.  

The bulk of the classical theory has been 
developed about the assumption of a quadratic, or 
at least symmetric and analytically simple loss 
structure. In some cases this assumption is made 
explicit, although in most it is implicit in the search 
for estimating procedures that have the “nice” 
statistical properties of unbiasedness and minimum 
variance. Such procedures are usually satisfactory 
if the estimators so generated are to be used solely 
for the purpose of reporting information to another 
party for an unknown purpose, when the loss 
structure is not easily discernible, or when the 
number of observations is large enough to support 
Normal approximations and asymptotic results. 
Unfortunately, we seldom are fortunate enough to 
be in asymptotic situations. Small sample sizes are 
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generally the rule when estimation of system states 
and the small sample properties of estimators do 
not appear to have been thoroughly investigated. 
Therefore, the above procedures of the statistical 
estimation have long been recognized as deficient, 
however, when the purpose of estimation is the 
making of a specific decision (or sequence of 
decisions) on the basis of a limited amount of 
information in a situation where the losses are 
clearly asymmetric. 

In this paper, we propose a new technique of 
invariant statistical embedding and averaging via 
pivotal quantities (ISE&APQ) to solve the 
problems of estimation, improvement or 
optimization of statistical decisions under 
parameter uncertainty.  

The technique of ISE&APQ, the idea of which 
belongs to the authors, is based on the constructive 
use of the invariance principle in mathematical 
statistics and allows one to solve many problems of 
the theory of statistical inferences in a simple way. 
It allows one to yield operational, optimal 
information-processing rules and may be employed 
for finding the efficient statistical decisions for 
problems such as, say, multi-product newsboy 
problems with constraints, allocation problems of 
aircraft to routes under parametric uncertainty, 
airline set inventory control problems for multi-leg 
flights, etc.  

The aim of the present paper is to show how the 
technique of ISE&APQ may be employed in the 
particular case of optimization, estimation, or 
improvement of statistical decisions under 
parametric uncertainty. The technique used here is 
a special case of more general considerations 
applicable whenever the statistical problem is 
invariant under a group of transformations, which 
acts transitively on the parameter space. 

 

2  Technique of Invariant Statistical 
Embedding and Averaging via Pivotal 
Quantities (ISE&APQ) 

2.1 Preliminaries 

In the general formulation of decision theory, we 
observe a random sample X=(X1, X2, …, Xn) with a 
sequence of iid rv’s with common distribution 

function ( )F x where a parameter  (in general, 

vector)is unknown,    (parameter space). A 

statistic S = S(X) is a sufficient for  or for the 

family of distributions  :F  Θ  if and only if 

the conditional distribution of X, given S = s does 

not depend on . If we choose decision d from the 

set of all possible decisions D, then we suffer a 

loss L(,d). A “decision rule” is a method of 

choosing d from D after observing S, that is, a 

function d(S) = d. Our average loss (called risk) 

E{L(,d(S))} is a function of both   and the 

decision rule d(), called the risk function R(,d), 
and is the criterion by which rules are compared. 
Thus, the expected loss (gains are negative losses) 
is a primary consideration in evaluating decisions. 
We will now define the major quantities just 
introduced. 

Definition 1. A general statistical decision 

problem is a triplet (, D, L) and a random sample 

X. The random variable X from X (called the data) 

has a distribution function ( )F x where  is 

unknown but it is known that   . X will denote 
the set of possible values of the random variable X. 

 is called the state of nature, while the nonempty 

set  is called the parameter space. The nonempty 

set D is called the decision space or action space. 

Finally, L  is  called  the  loss  function and to each 

   and dD it assigns a real number L(,d). 

Definition 2. For a statistical decision problem 

(, D, L), X, a (nonrandomized) decision rule is a 

function d() which to each S assigns a member d of 

D: d(S)=d. 

Definition 3. The risk function R(,d) of a 
decision rule d = d(S) for a statistical decision 

problem (, D, L), X (the expected loss or average 

loss when  is the state of nature and a decision is 

chosen by rule d()) is R(,d)=E{L(,d)}. 

This paper is concerned with the implications of 
group theoretic structure for invariant loss 
functions. Our underlying structure consists of a 

class of probability models (X, A, P), a one-one 

mapping  taking P  onto an index set , a 

measurable space of actions (D, B), and a real-

valued loss function L(,d) defined on   D. We 
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assume that a group G of one-one A - measurable 

transformations acts on X and that it leaves the 

class of models (X, A, P) invariant. We further 

assume that homomorphic images G  and G  of G 

act on  and D, respectively. ( G  may be induced 

on  through  as in [1]; and G  may be induced on 

D  through L, see [2]). We shall say that L is 

invariant if for every (, d)    D      

( , ) ( ),L g gd L d      gG.              (1) 

Let us assume that a loss function, L(,d), can 
be transformed as follows: 

#( , ) ( , ) ( , ),S SL d L g g d L V              (2) 

where ( , )V V S    is a pivotal quantity whose 

distribution does not depend on unknown parameter 

, ( , )S d   is an invariant decision function, S is 

a sufficient statistic for  (or a maximum likelihood 

estimator of ). Then a risk function is given by 

   #( , ) ( , ) ( , ) ,R d E L d E L V   
      

(3) 

where the unknown parameter   is eliminated from 
the problem. In this case, the statistical decision 
rule d which minimizes the risk described by (3) is 
given by 

1( , ),d S d                       (4) 

where 

 #arg  min   ( , ) .E L V


  
           

(5) 

Consider now, for example, the problem of 
estimating the location-scale parameter of a 
distribution belonging to a family generated by a 
continuous cumulative distribution function (cdf) F, 

P : ( ) ,  ,  ,
x

P F x F x R 
 


       

  
Θ  

 ( , ) : , ,  0R       Θ D.          (6) 

The group G of location and scale changes leaves 

the class of models invariant. Since G  induced on 

 by P   is uniquely transitive, we may 

consider invariant loss function of the form 

 

1 2( , ) , ,
d d

L d L


 
   

                    
(7) 

where ( , )    and 1 2( , ).d d d Let us assume 

that there is the maximum likelihood estimator

( , )  
  

 of ( , ).    Then a loss function, 

L(,d), can be transformed as follows: 

1 2( , ) ( , ) ,
d d

L d L g g d L 

     
    
     

 
 

   
    

     #
1 2 1 2 2, ( , ),L V V V L V    

             (8) 

where  

1 2, ,V V V
  
 
    

 

 
               (9) 

1 2,V V  are pivotal quantities, 

1 2
1 2, ,

d d  
 
    

 



 
              

(10) 

1 2,  are invariant decision functions. Then a risk 

function is given by 

   #( , ) ( , ) ( , ) ,R d E L d E L V   
     

(11) 

where the unknown parametric vector ( , )    is 

eliminated from the problem. In this case, the 
statistical decision rules 1 2,d d , which minimize the 

risk described by (11), are given by 

1
1 1 1 1( , , ) ,d d           

           (12) 

1
2 2 1 2( , ) ,d d      

                 (13) 

where 

 #
1 2( , ) arg  min   ( , ) .E L V


      

     
(14) 
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2.2 Technique of ISE&APQ  

The technique of ISE&APQ includes the following 
3 stages:  

Stage 1 (Invariant statistical embedding). At 
this stage, an invariant embedding of a sample 
statistic in the decision criterion (performance 
index) is carried out to construct a pivotal quantity 
(or simply a pivot) in order to isolate the unknown 
parameter from the problem (since the 
pivot's probability distribution does not depend on 
the unknown parameter).  

Stage 2 (Averaging via pivotal quantities). At 
this stage, the decision criterion is averaged over 

the pivots’ probability distributions in order to 
eliminate the unknown parameters from the 
problem.    

Stage 3 (Decision making process). At this 
stage, when the unknown parameters have been 
eliminated from the decision criterion, it can be 
found an effective statistical decision rule. 

2.3 Comparison of Statistical Decision Rules  

In  order  to judge  which  statistical  decision rule  

might be preferred for a given situation, a 
comparison based on some “closeness to the true 
value” criteria should be made. The following 
approach is commonly used. 

Consider two estimators, say, d1 and d2 having 

risk function R(,d1) and R(,d2), respectively. 
Then the relative efficiency of d1 relative to d2 is 
given by 

 1 2 2 1rel.eff . , |  = ( , ) ( , ).R d d R d R d   
  (15) 

When  1 2 0rel.eff . , 1R d d     for some 0 , we say 

that d2 is more efficient than d1 at 0 . If

 1 2rel.eff . , 1R d d      for all  with a strict 

inequality for some 0 , then d1 is inadmissible 

relative to d2. 

2.4 Illustrative Example  

Consider, for example, the problem of estimating a 
quantile q of an exponential distribution on the 

basis of a random sample X1, …, Xn of size n  2. 
The exponential distribution is often used for length 
of life data. The exponential probability density 
function (pdf) is given by 

1
( ) exp ,    0,    0.

x
f x x 

 
     
       

(16) 

The cumulative distribution function (cdf) is given 
by  

( ) 1 exp ,    0,    0.
x

F x x 


      
      

(17) 

Quantile estimation, particularly for the exponential 
distribution, is important in reliability theory, life 
testing, and so on. Also, in statistical decision 
theory it is of interest to find out if the best 
equivariant estimator or the maximum likelihood 
estimator (MLE) of quantile is admissible. 

Thus, the problem is to estimate the  pth  quantile 

q =   of the exponential distribution, where 0 <  

=  ln(1p); 0 < p < 1. The loss function is taken as 

 2
( , ) ( ) ,L d F d p  

               (18) 

where   d   is   an   estimator   (decision rule)   for  

estimating the quantile q. We evaluate the 
performance of an estimator for quantile with the 
help of the risk function (decision criterion). 

 ( , ) ( , ) .R d E L d                 (19) 

Assuming that the parameter  is unknown, we 

find the maximum likelihood estimator (MLE) of   
given by 

1

.
n

i
i

X n


 


                       
(20) 

It is known that 

1~ ( ) exp ,
( )

n
n

n

n n

n
   

 
  

    


  

 

 0,    0,  


                       (21) 
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where   

V  


                            (22) 

represents a pivotal quantity with the probability 
density function 

 1( ) exp ,    0.
( )

n
nn

v v nv v
n

   
       

(23) 

To solve the above problem, the technique of 
invariant statistical embedding and averaging via 
pivotal quantities (ISE&APQ), proposed in this 
paper, can be used. 

Using the technique of ISE&PQA, we have the 
following:  

Stage 1. Invariant embedding of the MLE 


 in 
the decision criterion to construct the pivotal 
quantity V: 

    2
( , ) ( , ) ( )R d E L d E F d p     

 

2

1 exp
d

E p 

          
      

2 2
(1 ) 2(1 )exp exp

d d
E p p  

              
      

2 2
(1 ) 2(1 )exp exp

d d
E p p

 
  

               
     

 

   

    2(1 ) 2(1 )exp exp 2 ,E p p V V        (24) 

where 

.d 


                           (25) 

 Stage 2. Averaging of the decision criterion 
over the pivot’s probability distribution (23) of V: 

    2( , ) (1 ) 2(1 )exp exp 2R d E p p V V        
 

   2

0

(1 ) 2(1 )exp exp 2 ( )p p v v v dv  


          

   2

0

(1 ) 2(1 )exp exp 2p p v v 


        
 

 1 exp
( )

n
nn

v nv dv
n

 


 

2(1 ) 2(1 )
( ) ( 2 )

n n

n n

n n
p p

n n 
    

   

2 1 1
(1 ) 2(1 ) .

(1 / ) (1 2 / )n n
p p

n n 
    

   
(26)

 

Stage 3. Process of finding the optimal 
statistical decision rule:  

If p=0.8, n=2 and 10, 


  it can be shown that   

arg min ( , )
d

R d  
 

2 1 1
argmin (1 ) 2(1 )

(1 / ) (1 2 / )n n
p p

n n  
 

         

4.89598.                            (27) 

The optimal estimator (statistical decision rule) d 
for estimating the quantile q is given by 

4.89598 10 48.9598,d      


       (28) 

and the risk function is equal to 

 ( , ) ( , ) 0.035121.R d E L d          (29) 

For comparison, the maximum likelihood 
estimator MLd for estimating the quantile q is given 
by  

ML ln(1 )d p   
 

 

1.609438 10 =16.09438,               (30) 

and the risk function is equal to 

  ML ML( , ) ( , ) 0.064049.R d E L d        (31) 

The relative efficiency of dML relative to d   is 
given by 

 ML
ML

( , )
rel.eff . , |  = 

( , )R

R d
d d

R d
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0.035121
0.548346.

0.064049
 

              
(32) 

Thus, in this case, the use of d  leads to a reduction 
in the risk of about 45.2 % as compared with ML .d  

3 Prediction of Future Random 
Quantities 

Prediction of future random quantities (future 
outcomes, order statistics, etc.) based on the past 
and current data is the most prevalent form of 
statistical inference. Predictive inferences for future 
random quantities are widely used in risk 
management, finance, insurance, economics, 
hydrology, material sciences, telecommunications, 
and many other industries. Predictive inferences 
(predictive distributions, prediction and tolerance 
limits) for future random quantities on the basis of 
the past and present knowledge represent a 
fundamental problem of statistics, arising in many 
contexts and producing varied solutions.  

Statistical prediction is the process by which 
values for unknown observables (potential 
observations yet to be made or past ones which are 
no longer available) are inferred based on current 
observations and other information at hand. 
Whereas statistical estimation is concerned about 
how to get information on a distribution, usually its 
parameters, percentiles, distribution function, 
cumulative distribution function or complementary 
cumulative distribution function, the aim of 
prediction is to make inference on the value of 
some statistic of a sample and to enclose it within 
prediction limits. 

3.1  Types of Prediction 

There are the following types of prediction:  

A. New-sample prediction. In this case, the 
data from a past sample of size n are used to make 
prediction on one or more future units in a second 
sample of size m from the same process or 
population. For example, based on previous 
(possibly censored) life test data, one could be 
interested in predicting the following: 

(1) time to failure of a new item (m = 1); 

(2) time until the kth failure in a future sample 

of m units, m   k; 

(3) number of failures by time  in a future 
sample  of m units. 

B. Within-sample prediction. In this case, the 
problem is to predict future events in a sample or 
process based on the early-failure data from that 
sample or process. For example, if n units are 

followed until censoring time c and there are r 

observed ordered failure times, 1  ... ,rX X   one 

could be interested in predicting the following: 

(1) time of next failure; 

(2) time until l additional failures, l  nr; 

(3) number of additional failures in a future 

interval (c, ). 

C. New-within-sample prediction. In this case, 
the problem is to predict future events in a sample 
or process based on both the early-failure data from 
that sample or process and the data from a previous 
sample (i.e., when for predicting a future failure 
time of a unit in a new sample there are available 
both the early-failure data from that sample and the 
data from a previous sample). 

In this paper, the new-sample prediction is 
considered. 

3.2  Types of Tolerance Limits 

In this paper, two types of statistical limits are 

defined: i) statistical -content tolerance limits with 

expected (1)-confidence on future outcomes, ii) 

statistical tolerance limits with expected (1)-

confidence on future outcomes (or simply (1)-

prediction limit). To be specific, let  denote a 
proportion between 0 and 1. Then one-sided 

statistical -content tolerance limit with expected 

(1)-confidence is determined to capture a 

proportion  or more of the population, with a given 

expected confidence level 1. For example, an 

upper statistical -content tolerance limit with 

expected (1)-confidence on future outcomes 
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from a univariate population is such that with the 

given expected confidence level 1, a specified 

proportion  or more of the population will fall 

below the limit. A lower statistical -content 

tolerance limit with expected (1)-confidence 
satisfies similar conditions. An upper statistical 

tolerance limit with expected (1)-confidence is 
determined so that the expected proportion of the 

population failing below the limit is (1). A lower 

statistical prediction limit with expected (1)-
confidence satisfies similar conditions.  The 

statistical -content tolerance limit with expected 

(1)-confidence seems to be more useful than the 

statistical tolerance limit with expected (1)-
confidence but is relatively difficult to construct.  

3.3  Background 

The logical purpose for a tolerance (or prediction) 
limit must be the prediction of future outcomes for 
some (say, stochastic) process. Tolerance 
(prediction) limits enjoy a fairly rich history in the 
scientific literature and have a very important role 
in engineering and manufacturing applications. 
Patel [3] provides a review (which was fairly 
comprehensive at the time of publication) of 
tolerance intervals (limits) for many distributions as 
well as a discussion of their relation with 
confidence intervals (limits) for percentiles. 
Dunsmore [4] and Guenther, Patil, and Uppuluri [5] 
both discuss 2-parameter exponential tolerance 
intervals (limits) and the estimation procedure in 
greater detail. Engelhardt and Bain [6] discuss how 
to modify the formulas when dealing with type II 
censored data. Guenther [7] and Hahn and Meeker 
[8] discuss how one-sided tolerance limits can be 
used to obtain approximate two-sided tolerance 
intervals by applying Bonferroni's inequality. In 
Nechval et al. [9-26], the exact statistical tolerance 
and prediction limits are discussed under 
parametric uncertainty of underlying models. 

In contrast to other statistical limits commonly 

used for statistical inference, the  - content 

tolerance limit with expected (1) - confidence is 
used relatively rarely. One reason is that the 
theoretical concept and computational complexity 

of the  - content tolerance limits with expected 

(1) - confidence is significantly more difficult 
than that of the standard confidence and prediction 
limits. Thus it becomes necessary to use the 
innovative approaches which will allow one to 
construct tolerance limits on future random 
quantities for many populations. 

4 Focus of the Paper 

4.1  Problem Statement 

The problem can be stated more formally as 
follows. Let X1  ...  Xr be the first r ordered 
observations of a random variable X from a sample 
of size n  from a distribution with a probability 
density function ( )f x (distribution function 

( ),F x  survival function ( ) 1 ( ))F x F x   and S be 
any statistic (say, sufficient statistic or maximum 
likelihood estimator) obtained from the 
experimental random sample X1  ...  Xr, and let a 
random variable Y (in a future random sample Y1, 
…, Ym) has the same distribution with the 
probability density function ( )f y (distribution 

function ( ),F y  survival function ( ) 1 ( )),F y F y  
where a parameter  (in general, vector) is common 
to both distributions and it is assumed that some or 
all numerical values of components of the 
parametric vector  are unspecified.  

On the basis of the experimental random sample 

X1  ...  Xr we wish to make a prediction about a 

future outcome of Yk (kth order statistic, 1  k  m, 
in a future random sample of m ordered 

observations Y1 … Ym), usually in the form of 
one-sided statistical tolerance limits on future 

outcomes of Yk (lower -content tolerance limit Lk 

with expected (1)-confidence and upper -
content tolerance limit Uk with expected (1)-
confidence). That is, if Lk and Uk are functions of S, 

then Lk  Lk (S) is a lower statistical -content 

tolerance limit with expected (1)-confidence on 
future outcomes of the kth order statistic Yk if   

( )

Pr ( )
k

k k

L S

E g y dy  
         
  

  Pr ( ( )) 1 ,kE G L S          (33) 
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and Uk  Uk (S) is an upper statistical -content 

tolerance limit with expected (1)-confidence  on 
future outcomes of the kth order statistic Yk if  

     
( )

0

Pr ( )
kU S

k kE g y dy  
         

  

    
  Pr ( ( )) 1 ,kE G U S             (34) 

where 

11
( ) [ ( )] [1 ( ) ( )

( , 1)
k m k

k k k kg y F y F y f y
k m k   

  
     

(35) 

is the probability density function of the kth order 
statistic Yk, 

( ) Pr( ) [ ( )] [1 ( )]
m

i m i
k k k k k

i k

m
G y Y y F y F y

i  




 
    

 


 

1 ( ) ( )
m i m i

k k
i k

m
F y F y

i  





 
         

 
  

0

( 1) (
m i m i jj

k
i k j

m i
F y

i j 

 

 

   
       

   
 

 

( )
1

0

1
(1 )

( , 1)

kF y
k m k d

k m k



    
  

       
(36) 

is the probability distribution function of the kth 
order statistic Yk. It can be shown that  

   

( )
( ).k

k
k

dG y
g y

dy



                    

(37) 

Further, ( )k kL L S   is a lower statistical 
tolerance limit with expected (1)-confidence on 
future outcomes of the kth order statistic Yk from a 
set of m future ordered observations Y1…Ym if it 
satisfies  

  
( )

Pr ( ) ( )
k

k k k k

L S

E Y L S E g y dy  

     
  



  

   
 ( ( )) 1 .kE G L S    

                

(38) 

( )k kU U S   is an upper statistical tolerance 
limit with expected (1)-confidence on future 
outcomes of the kth order statistic Yk from a set of 
m future ordered observations Y1…Ym if it 

satisfies  

  
( )

0

Pr ( ) ( )
kU S

k k k kE Y U S E g y dy  

     
  



  

      
 ( ( )) 1 .kE G U S      (39) 

In this paper, a new technique for intelligent 

constructing the statistical -content tolerance limits 

with expected (1)-confidence as well as the 

statistical tolerance limits with expected (1)-
confidence on order statistics in future samples is 
proposed. For illustration, the extreme-value and 
Weibull distributions are considered. 

4.2  Extreme-Value Distribution 

This distribution is used in many research fields 
including, among others, life testing and water 
resource management. This is the so-called first 
asymptotic distribution of extreme values, hereafter 
referred to simply as the extreme-value distribution. 
The distribution is extensively used in a number of 
areas as a lifetime distribution and sometimes 
referred to as the Gumbel distribution, after E. J. 
Gumbel, who had pioneered its use (Gumbel [27]). 

Let X1  ...  Xr be the first r ordered 
observations of a random variable X  from a sample 
of size n from an extreme-value distribution with 
the pdf (probability density function), 

1 1

2 2 2

1
( ) exp exp exp  ,

x x
f x

 
  

     
     

      
 <  ,x   (40) 

and cdf (cumulative distribution function), 

1

2

( ) 1 exp exp  ,  < ,
x

F x x



  

      
     

(41) 

indexed by location and scale parameters 1   and 

2 ,  where 1 2( , ).   It is assumed that the 

parameters 1 1(  )       and 2 0   are 

unknown.  

In Type II censoring, which is of primary 
interest here, the number of survivors are fixed and 
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Xr is a random variable. The MLE’s 1


and 2


of the 

parameters 1 and 2 ,  respectively, are solutions of
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In terms of the extreme-value distribution 
variates, we have that 
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are pivotal quantities. The probability density 
functions of the pivotal quantities do not depend on 
the parameters. It can be shown that the joint pdf of 
the pivotal quantities  
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(45) 

conditional on fixed 

S(r) = (Si, …, Sr),                      (46) 

where 
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i

X
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(47) 

are ancillary statistics, any r2 of which form a 

functionally independent set, 1


 and 2


 are the 

maximum likelihood estimates for 1  and 2 ,
respectively, based on the first r ordered 

observations (X1 ... Xr) from a sample of size n 
from the extreme-value distribution (8), which can 
be found from solution of (42) and (43), is given by 
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is the normalizing constant. If a pivotal quantity is 
given by 

1
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exp( ) ( )exp( ) ,
r

W
i r

i

W e S W n r S W


 
   

 


 
(52)

 

it follows from (49) that 
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rW g w w w
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4.3  Two-Parameter Weibull Distribution 

The two-parameter Weibull distribution is one of 
the most widely used life distributions in reliability 
analysis. This distribution is very flexible, and can, 
through an appropriate choice of parameters, model 
many types of failure rate behaviors. It has wide 
applications in diverse disciplines.  

Let 1 ... rX X   be the first r ordered 

observations of a random variable X from a sample 

of size n from a two-parameter Weibull distribution 
with the pdf, 

1
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x x
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and cdf, 
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indexed by scale and shape parameters  and , 
where ( , ).    It is assumed that the parameters 

 and   are unknown. This distribution is directly 
related to the extreme-value distribution by the 
easily shown fact that if X  has a Weibull 

distribution (54), then  X = ln X has an extreme-

value distribution with 1 ln   and 1
2 .    In 

analyzing data it is often convenient to work with 
log times, the extreme-value distribution arises 
when lifetimes are taken to be Weibull distributed. 

The MLE’s of the Weibull parameters  and  are

1exp 
 

and 1
2 .  

 
 If desired, the maximum 

likelihood equations (42) and (43) can be written in 
Weibull form and solved directly from the start. 
The equations are   
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In terms of the Weibull variates, we have that 
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are pivotal quantities. The probability density 
functions of the pivotal quantities do not depend on 
the parameters. It can be shown that the joint pdf of 
the pivotal quantities  
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conditional on fixed 

    Z(r) = (Zi, …, Zr), (60) 
where 
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are ancillary statistics, any r2 of which form a 

functionally independent set, 


 and 


are the 

maximum likelihood estimates for  and , 
respectively, based on the first r ordered 
observations 1 ... rX X   from a sample of size n 

from the two-parameter Weibull distribution (54), 
which can be found from solution of (56) and (57), 
is given by 
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is the normalizing constant. If a pivotal quantity is 
given by 
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it follows from (31) that 
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5 Constructing Statistical -Content 
Tolerance Limits with Expected 

(1)-Confidence 

5.1  Constructing Lower Statistical -
Content Tolerance Limit with Expected 

(1)-Confidence  

Theorem 1. Let X1  ...  Xr be the first r ordered 
observations of a random variable ( ln )X X  from 

a sample of size n from an extreme-value 
distribution defined by the probability density 

function (8). Then a lower statistical -content 

tolerance limit with expected (1)-confidence, Lk  

 Lk(S), on future outcomes of the kth order statistic 

( ln )k kY Y from a set of m future ordered 

observations Y1 … Ym also from the distribution 
(40), which satisfies (33) is given by 
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the maximum likelihood estimates 1


and 2


 of the 

parameters 1   and 2   are determined from (42) 

and (43), respectively; the ancillary statistics Si, 
i=1, …, r, are given by (47); 1q   is a quantile of 

the beta distribution satisfying 
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Proof. It follows from (35) and (36) that 

   Pr ( ) Pr ( ) Pr 1 ( )
k

k k k k

L

g y dy G L G L    
 

       
 


 

( )
1

0

1
Pr 1 (1 )

( , 1)

kF L
k m k d

k m k



    
 

        


 

( )
1

0

1
Pr (1 ) 1

( , 1)

kF L
k m k d

k m k



    
 

        


 

 1Pr ( )kF L q  

1
1

2

Pr 1 exp exp kL
q 


 

   
          

 

1
1

2

Pr exp exp 1kL
q 


 

   
          

 

 
 

1

2

1

1

1 2

ln 1
Pr

exp ( )

W
W

k

q
e

L



 




        

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.3

Nicholas A. Nechval, 
Gundars Berzins, Konstantin N. Nechval

E-ISSN: 2224-2880 27 Volume 19, 2020



 

 

1

2

2 2
1

1

1 2 2
1

1 2

exp( ) ( )exp( )

Pr ln 1 exp( ) ( )exp( )

exp ( )

r
W

i r
i

r

i r
i

W

k

e SW n r S W

q SW n r S W

L



 








  
   

  
       
       




   

 

  2

1

1 2 2
1

1 2

ln 1 exp( ) ( )exp( )

Pr .
exp ( )

r

i r
i

W

k

q SW n r SW

W
L



 






  
    

   
    
 


 

 

(71)

 

Using averaging via pivotal quantity, it follows 
from (33) and (71) that   
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 It follows from (72) that 
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we have (68). This completes the proof. 

Theorem 2. Let 1 ... rX X  be the first r 

ordered observations of a random variable 
( exp )X X  from a sample of size n from a two-

parameter Weibull distribution defined by the 
probability density function (54). Then a lower 

statistical -content tolerance limit with expected 

(1)-confidence, ( ),k kL L S  on future outcomes 

of the kth order statistic ( exp )k kY Y from a set of 

m future ordered observations 1 ... mY Y  also from 

the distribution (54), which satisfies (33) is given 
by  

1 exp ,
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where 
kL is a tolerance factor determined by 
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the maximum likelihood estimates 


and


 of the 

parameters  and  are determined from (56) and 
(57), respectively; the ancillary statistics Zi, i=1, …, 
r, are given by (61); 1q   is a quantile of the beta 

distribution satisfying (70). 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.3

Nicholas A. Nechval, 
Gundars Berzins, Konstantin N. Nechval

E-ISSN: 2224-2880 28 Volume 19, 2020



Proof. The proof is similar to that of Theorem 1 
and so it is omitted here. 

Inference 1 (for the tolerance factors 
kL and 

).
kL  It follows from (74) and (75) that 
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5.2  Constructing Upper Statistical -
Content Tolerance Limit with Expected 

(1)-Confidence  

Theorem 3. Let X1  ...  Xr be the first r ordered 
observations of a random variable ( ln )X X  from 

a sample of size n from an extreme-value 
distribution defined by the probability density 

function (40). Then an upper statistical -content 

tolerance limit with (1)-confidence, Uk  Uk (S), 
on future outcomes of the kth order statistic

( ln )k kY Y  from a set of m future ordered 

observations Y1  …  Ym also from the distribution 
(40), which satisfies (34) is given by 

1 2 ln ln ,
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where 
kU is a tolerance factor determined by 
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(79) 

the maximum likelihood estimates 1


and 2


 of the 

parameters 1   and 2   are determined from (42) 

and (43), respectively; the ancillary statistics Si, 
i=1, …, r, are given by (47); q  is a quantile of the 

beta distribution satisfying (70). 

Proof. The upper statistical -content tolerance 

limit with expected (1)-confidence, Uk Uk (S), is 

obtained from a lower statistical -content tolerance 

limit with expected (1)-confidence, Lk Lk (S), by 

replacing   by 1, and 1  by . This completes 
the proof. 

Theorem 4. Let 1 ... rX X  be the first r 

ordered observations of a random variable 
( exp )X X  from a sample of size n from a two-

parameter Weibull distribution defined by the 
probability density function (54). Then an upper 

statistical -content tolerance limit with (1)-

confidence, ( ),k kU U S  on future outcomes of the 

kth order statistic ( exp )k kY Y  from a set of m 

future ordered observations 1 ... mY Y  also from 

the distribution (54), which satisfies (34) is given 
by 

1 exp ,
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where 
kU is a tolerance factor determined by 
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Proof. The upper statistical -content tolerance 

limit with expected (1)-confidence, ( ),k kU U S  

is obtained from a lower statistical -content 

tolerance limit with expected (1)-confidence, 

( ),k kL L S by replacing   by 1, and 1  by . 

This completes the proof. 

Inference 2 (for the tolerance factors 
kU and 

).
kU   It follows from (78) and (80) that  
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6 Constructing Statistical Tolerance 

Limits with Expected (1)-
Confidence 

6.1  Constructing Lower Statistical 

Tolerance Limit with Expected (1)-
Confidence  

Theorem 5. Let X1  ...  Xr be the first r ordered 
observations of a random variable ( ln )X X  from 

a sample of size n from an extreme-value 
distribution defined by the probability density 
function (40). Then a lower statistical tolerance 

limit with expected (1)-confidence, ( ),k kL L S   

on future outcomes of the kth order statistic 

( ln )k kY Y from a set of m future ordered 

observations Y1 …  Ym also from the distribution 
(40), which satisfies (38) is given by 

1 2 ln ln ,
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Proof. It follows from (35) and (36) that 
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Using averaging via pivotal quantity, it follows 
from (38) and (85) that  
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It follows from (86) that 
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Assuming that  
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(88) 

we have (83). This completes the proof. 

Theorem 6. Let 1 ... rX X  be the first r 

ordered observations of a random variable 
( exp )X X from a sample of size n from a two-

parameter Weibull distribution defined by the 
probability density function (54). Then a lower 

statistical tolerance limit with expected (1)-

confidence, ( ),k kL L S   on future outcomes of the 

kth order statistic ( exp )k kY Y  from a set of m 

future ordered observations 1 ... mY Y  also from 

the distribution (54), which satisfies (38) is given 
by 

1 exp ,
k

k kL
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where 
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Proof. The proof is similar to that of Theorem 5 

and so it is omitted here. 

Inference 3 (for the tolerance factors 
kL

  and 

).
kL

   It follows from (88) and (89) that 
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6.2  Constructing Upper Statistical 

Tolerance Limit with Expected (1)-
Confidence  

Theorem 7. Let X1  …  Xr be the first r ordered 
observations of a random variable ( ln )X X from a 

sample of size n from an extreme-value distribution 
defined by the probability density function (40). 
Then an upper statistical tolerance limit with 

expected (1)-confidence, ( ),k kU U S   on future 

outcomes of the kth order statistic ( ln )k kY Y from 

a set of m future ordered observations Y1 …  Ym 

also from the distribution (40), which satisfies (39) 
is given by 

1 2 ln ln ,
k

k kU
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where 
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  is a tolerance factor determined by 
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 Proof. The upper statistical tolerance limit with 

expected (1)-confidence, ( ),k kU U S   is 

obtained from a lower statistical tolerance limit 

with expected (1)-confidence, ( ),k kL L S   by 

replacing 1 by . This completes the proof. 

Theorem 8. Let 1 ... rX X  be the first r 

ordered observations of a random variable 
( exp )X X  from a sample of size n from a two-

parameter Weibull distribution defined by the 
probability density function (54). Then an upper 
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statistical tolerance limit with expected (1)-

confidence, ( ),k kU U S   on future outcomes of the 

kth order statistic ( exp )k kY Y  from a set of m 

future ordered observations 1 ... mY Y  also from 

the distribution (54), which satisfies (39) is given 
by 

1 exp ,
k

k kU
U U  


 



                 
(94) 

where 
kU

  is a tolerance factor determined by 
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Proof. The upper statistical tolerance limit with 

expected (1)-confidence, ( ),k kU U S   is 

obtained from a lower statistical tolerance limit 

with expected (1)-confidence, ( ),k kL L S   by 

replacing 1 by . This completes the proof. 

Inference 4 (for the tolerance factors 
kU

  and 

).
kU

    It follows from (92) and (94) that 
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7 Numerical Examples 

7.1  Numerical Example 1 

For the Weibull case, Lawless [28] discusses an 
example with 10 items, which are put on test 
simultaneously; the life test is terminated at the 
time of the fifth failure, whence n=10, r=5, in our 

notation here; 1 50.5X   hours, 2 71.3,X   3 84.6,X 

4 98.7,X  5 103.8;X  the maximum likelihood 

estimates of  and  are, respectively, 
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Based on these data, a lower 90% prediction limit 
(in terms of this paper, a lower statistical tolerance 

limit with expected (1)-confidence, where 

=0.1) is to be constructed for the minimum of 40 
independently, identically distributed lifetimes. 
Lawless [28] reports a conditional lower 90% 
prediction limit of 8.8 hours for this example. 
Based on a simulation of 50 000 samples, the lower 
prediction limit obtained by Mee and Kushary [29] 
is 8.73 hours. 

Lower statistical tolerance limit withexpected 

(1)-confidence. Taking 1 = 0.9 and k=1, with 
n=10, r=5 and m=40, we have from (89) that the 
lower statistical tolerance limit with expected 

(1)-confidence, ( ),k kL L S   on the minimum 

 Y1 of independent lifetimes in a group of m=40 

components which are to be put into service, is 
given by  

 1
1 2exp exp ln 8.7941146,

k k
k kL L

L L         
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where, as it follows from (90) and (91), the 

tolerance factor 
kL

  is given by 
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(100) 

Statistical inference 1. It is easy to see that the 
conditional lower 90% prediction limit of 8.8 hours 

of Lawless [28] on the minimum  Y1 of 

independent lifetimes in a group of m=40 
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components, which are to be put into service, and 
the lower statistical tolerance limit of 8.7941146 
hours with expected 0.9-confidence, which is 
obtained in this paper by using the proposed 
technique, are practically the same. 

Lower statistical -content tolerance limit 

with expected (1)-confidence. In the above case 

(if =0.9), it follows from (75) that the lower 

statistical -content tolerance limit with expected 

(1)-confidence, ( ),k kL L S  on the minimum 

 Y1 of independent lifetimes in a group of m=40 

components which are to be put into service, is 
given by 

 1
1 2exp exp ln 3.7,

k kk L k LL L        
   

 
(101) 

where, as it follows from (76) and (77), the 

tolerance factor 
kL is given by 
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75.5451/10 ,

kL 
                 

(102)

 
1 0.002631q   is a quantile of the beta 

distribution satisfying (70). 

Statistical inference 2. Thus, the manufacturer 
has 90% assurance that no failures will occur in the 

proportion =0.9 or more of the population of 
m=40 components, which are to be put into service, 
before 3.7kL  hours.  

Others have computed approximate 90% 
prediction limits for a single future lifetime for this 
example. Fertig, Meyer and Mann [30] computed a 
lower prediction limit of 56.98 hours, using best 
linear invariant estimators and a Monte Carlo 
estimated percentile. Engelhardt and Bain [31] 
proposed two approximations; for this example 
they obtained 56.8 (via a procedure requiring 
iterative solution of a nonlinear equation) and 59.1 

(via a simpler approximation). Based on a 
simulation of 50 000 samples, the 90 % lower 
prediction limit obtained by Mee and Kushary [29] 
for a single future observation is 56.6 hours. 

Lower statistical tolerance limit withexpected 

(1)-confidence. Taking 1 = 0.9 and k=m=1, 
with n=10 and r=5, we have from (89) that the 
lower statistical tolerance limit with expected 

(1)-confidence, ( ),k kL L S   on a single future 

observation is given by 

 1
1 2exp exp ln 56.641,

k k
k kL L

L L         
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where, as it follows from (90) and (91), the 

tolerance factor 
kL

  is given by 
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0.052479.
kL

 

                    
(104) 

Statistical inference 3. Based on a simulation of 
50 000 samples, the 90 % lower prediction limit 
obtained by Mee and Kushary [29] for a single 
future lifetime is 56.6 hours, which is slightly 
smaller than 56.641 hours (see (103)). Engelhardt 
and Bain [31] proposed the first approximate lower 
prediction limit of 56.8 hours and Fertig, Meyer 
and Mann [30] computed the lower prediction limit 
of 56.98 hours for a single future lifetime, which 
are slightly larger than 56.641 hours (see (103)). 
The second approximate lower prediction limit of 
59.1 hours proposed by Engelhardt and Bain [31] 
for a single future lifetime is larger than 56.641 
hours (see (103)).  

7.2  Numerical Example 2 

Consider the following results given by Lieblein 
and Zelen [32] of test of endurance, in millions of 
revolutions, of n=23 ball bearings: 17.88, 28.92, 
33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 
54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 
93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 
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173.40. The maximum likelihood estimates of  

and  are, respectively, 
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(106) 

Numerous authors have used these data as 
illustrative of a sample from a two-parameter 
Weibull distribution. Using 20000 simulated 
samples of size n=23, Mee and Kushary [29] 
obtained a 90% lower prediction limit for the fifth 
failure out one hundred ball bearings equal to 10.11 
million of revolutions, which is slightly smaller 
than the two approximate prediction limits 10.27 
and 10.59 reported by Engelhardt and Bain [31].   

Lower statistical tolerance limit withexpected 

(1)-confidence. Taking 1 = 0.9 and k=5, with 
r=n=23 and m=100, we have from (89) that the 
lower statistical tolerance limit with expected 

(1)-confidence, ( ),k kL L S   for a fifth failure out 

one hundred ball bearings is given by  

 1
1 2exp exp ln 10.35206,

k k
k kL L
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where, as it follows from (90) and (91), the 

tolerance factor 
kL

  is given by 
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0.0129452.
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(108) 

Statistical inference 4. Thus, it follows from 
(107) that the lower statistical tolerance limit with 

expected confidence of 0.9 ( 10.35206kL   million 

of revolutions) is between the two approximate 
prediction limits 10.27 and 10.59 reported by 

Engelhardt and Bain [31]. 

Lower statistical tolerance limit withexpected 

(1)-confidence. Taking 1 = 0.9 and k=1, with 
r=n=23 and m=100, we have from (89) that the 
lower statistical tolerance limit with expected 

(1)-confidence, ( ),k kL L S   for a first failure out 

one hundred ball bearings, is given by  

 1
1 2exp exp ln 2.083,

k k
k kL L

L L         
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where, as it follows from (90) and (91), the 

tolerance factor 
kL

  is given by 
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0.00044503.
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(110) 

Statistical inference 5. Lawless [17] obtained 
for this example (via conditional approach in terms 
of a extreme-value (Gumbel) distribution) the lower 
90% prediction limit of 2.08 million of revolutions 
for a first failure out one hundred ball bearings, 
which is slightly smaller than 2.083 (see (109)). 

7.3  Numerical Example 3 

Consider the data in an example discussed by 
Mann and Saunders [33]. They regard the data 
coming from the Weibull distribution as the results 
of full scale fatigue tests on a particular type of 
component. The data are for a complete sample of 

size n=3, with observations 45.952,X 1 54.143,X 2

and 65.440,X 3 results being expressed here in 

number of thousands of cycles. On the basis of 
these data it is wished to obtain the lower statistical 

tolerance limit with expected (1)-confidence for 

the minimum  Y1 of independent lifetimes in a 

group of m=500 components which are to be put 
into service. 

Lower statistical tolerance limit withexpected 

(1) confidence. The maximum likelihood 
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estimates of the unknown parameters  and , 

computed on the basis of ,( , ,)X X X1 2 3  are 

7.726 


and 58.706, 


 respectively. Taking 

1 = 0.8 and k=1, with r=n=3 and m=500, we 
have from (89) that the lower statistical tolerance 

limit with expected (1)-confidence, ( ),k kL L S   

on the minimum  Y1 of independent lifetimes in a 

group of m=500 components which are to be put 
into service, is given by 

 1
1 2exp exp ln 5.527411,

k k
k kL L

L L         
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where, as it follows from (90) and (91), the 

tolerance factor 
kL

  is given by  

2

2
2

2
2

1
2( )

0

1

1
arg 1

( )k

k

n
vn
i

i
nnL n v

v
i L

i

v z
dv

z m

 











 
 
            





z




 

81.18 /10 .
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(112) 

Statistical inference 6. Lawless [28] obtained 
for this example (via conditional approach in terms 
of the extreme-value (Gumbel) distribution) the 
lower 80% prediction limit of 5.623, which is 
slightly larger than 5.527411 (see (111)). The 
resulting lower 80% prediction limit of Mee and 
Kushary [29] for this example (obtained via 
simulation of 100 000 samples) was 5.225, which is 
slightly smaller than 5.527411 (see (111)). The 
Mann and Saunders [33] result for this example 
was only 0.766. All results are expressed here in 
the number of thousands of cycles.  

Lower statistical -content tolerance limit 

with expected (1)-confidence. Taking =0.8, 

1 = 0.8 and k=1, with r=n=3 and m=500, we 

have from (75) that a lower statistical -content 

tolerance limit with expected (1)-confidence,

( ),k kL L S  on the minimum  Y1 of independent 

lifetimes in a group of m=500 components which 
are to be put into service, is 

 1
1 2exp exp ln ,4.082282

k kk L k LL L        
   

 
(113) 

where, as it follows from (76) and (77), the 

tolerance factor 
kL is given by  
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91.135 /10 ,                        (114) 

1q   is a quantile of the beta distribution satisfying 

(70). 

Statistical inference 7. Thus, the manufacturer 
has 80% assurance that no failures will occur in the 

proportion =0.8 or more of the population of 
m=500 components, which are to be put into 

service, before 4.082282kL   thousands of cycles.   

8 Future Research Directions 

Predictive inferences (via tolerance limits) for 
future outcomes on the basis of the past and present 
knowledge represent a fundamental problem of 
statistics, arising in many contexts and producing 
varied solutions. In this paper, new-sample 
prediction (via tolerance limits) based on a previous 
sample is considered (i.e., when for predicting the 
future outcomes in a new sample there are available 
the observed data only from a previous sample). It 
is interesting to consider within-sample prediction 
(via tolerance limits) based on the early data from a 
current experiment (i.e., when for predicting the 
future outcomes in a sample there are available the 
early data only from that sample), and new-within-
sample prediction (via tolerance limits) based on 
both the early data from that sample and the data 
from a previous sample (i.e., when for predicting 
the future outcomes in a new sample there are 
available both the early data from that sample and 
the data from a previous sample), where it is 
assumed that only the functional form of the 
underlying distributions is specified, but some or all 
of its parameters are unspecified.  

9 Conclusion 
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In this article, we construct the following one-sided 
statistical tolerance limits: i) one-sided statistical 
tolerance limit that covers at least 100% of the 
measurements with expected 100(1)% 
confidence, ii) one-sided statistical tolerance limit 
determined so that the expected proportion of the 
measurements covered by this limit is (1).  
Tolerance limits have important role in application 
of statistical methods in technical practice, 
especially in statistical quality control. Inherent in 
every phase of industrial quality control is the 
problem of comparing some quality characteristic 
or measurement of a finished product against given 
specifications. Sometimes the specifications, or 
tolerance limits, are so stated by the customer or by 
design engineer that any appreciable departure will 
make the product unusable. There remains, 
however, the problem of producing the part so that 
an acceptably high proportion of units will fall 
within tolerance limits specified for the given 
quality characteristic. Also, if a product is made 
without prior specifications, or if modifications are 
made, it is desirable to know within what limits the 
process can hold a quality characteristics a 
reasonably high percentage of the time. We thus 
speak of natural tolerance limits; that is, we let the 
process establish its own limits which, according 
the experience, can be met in actual practice.  The 
new analytical technique proposed in this article 
represents the conceptually simple, efficient and 
useful method for constructing exact statistical 
tolerance limits on future outcomes under 
parametric uncertainty of underlying models. It 
does not in need to make any assumption 
concerning the statistical equation for the tolerance 
limit. This technique, using the experimental 
complete or type II censored data, is based on the 
idea of invariant embedding of a sample statistic in 
the underlying model to construct pivotal quantities 
and to eliminate the unknown parameters from the 
problem via pivotal quantity averaging. In this case, 
the exact statistical tolerance limits (under 
parametric uncertainty of underlying models) on 
future outcomes  (say, order statistics)  associated 
with sampling from corresponding distributions can 
be found easily and quickly making tables, 
simulation and special computer programs 
unnecessary.  

The analytical methodology described in this 
paper is illustrated for the two-parameter Weibull 
and extreme-value distributions. Applications to 
other log-location-scale distributions could follow 
directly.  

Finally, we give the three illustrative numerical 
examples, where the exact statistical tolerance 
limits with expected (1)-confidence, obtained in 
this paper in terms of the two-parameter Weibull or 
extreme-value distribution, are compared with the 
known results that are reported in the literature and 
were obtained by using the following: 1) tables, 2) 
simulation, 3) Monte Carlo estimated percentiles, 
4) special computer programs, 5) approximation, 6) 
transformation of the two-parameter Weibull 
distribution to the extreme-value distribution, etc. 
Although the details of the problems addressed in 
the paper can vary significantly from one industry 
to another, the focus is always on making more 
accurate decisions, rather than manually using 
guesses and intuitions, but rather from a scientific 
point of view using models and technologies 
implemented with disciplined processes and 
systems.The methodologies described here can be 
extended in several different directions to solve 
various problems arising in practice. 
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